

Calculation Policy

Background

The 2014 Primary National Curriculum for mathematics differs from its predecessor in many ways. Alongside the end of Key Stage year expectations, there are suggested goals for each year; there is also an emphasis on depth before breadth and a greater expectation of what children should achieve. In addition, there is a whole new assessment method, as the removal of levels gives schools greater freedom to develop and use their own systems. One of the key differences is the level of detail included, indicating what children should be learning and when. This is suggested content for each year group, but schools have been given autonomy to introduce content earlier or later, with the expectation that by the end of each key stage the required content has been covered. For example, in Year 2, it is suggested that children should be able to 'add and subtract one-digit and two-digit numbers to 20, including zero' and a few years later, in Year 5, they should be able to 'add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction)'. In many ways, these specific objectives make it easier for teachers to plan a coherent approach to the development of pupils' calculation skills. However, the expectation of using formal methods is rightly coupled with the explicit requirement for children to use concrete materials and create pictorial representations – a key component of the mastery approach. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (*reasoning*). Indeed, in certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. A list of terminology is located at Appendix A to this document.

How to use the policy

This mathematics policy is a guide for all staff at Springfield Primary Academy based on the guidance from White Rose. It is purposely set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the **focus must always remain on breadth and depth rather than accelerating through concepts.** Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems. All teachers use the White Rose Schemes of Learning basing their planning around their year group blocks in line with the yearly overviews and not to move onto a higher year groups scheme of learning. These modules use the Singapore Maths Methods and are affiliated to the workings of the 2014 Maths Programme of Study.

Teachers are expected to use concrete resources and pictorial representations in line with White Rose Maths Small Steps Guidance. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases during their journey through school.

Content of	the Policy	The quality and variety
Page 2	Addition	and speak are key
Page 4	Subtraction	mathematical vocabu
Page 8	Multiplication	mathematical, justificatio
Page 11	Division	
Page 14	Overview for each year group	2

y of language that pupils hear factors in developing theirulary), and presenting Фr n, argument or proof. 2014 Maths Programme of Study

Page 18 Mathematical Language

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + Fou is se
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The What What 4 +

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.	Children to draw the ten frame and counters/cubes.	Child of ed
		6
		6
		6
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. 10s 1s $10s 1s$ $1111 .$ $4 9$	41+
TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25 10s 1s 8 8 8 9 10 10 10 10 10 10 10 10	Chidlren to represent the base 10 in a place value chart.	Look 1 Form

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-
4 - 3 = 1	XXXX	
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g.	Ch on she to

Subtraction

Objective and Strategies	Concrete	Pictorial	
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. 6 - 2 = 4	Cross out drawn objects to show what has been taken away. $ \begin{array}{c} $	
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13 - 4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line. -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -57 This can progress all the way to counting back using two 2 digit numbers.	Put 1 num
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference.	+6 Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Liso is 13 years old. Her sister is 22 years old. Find the difference in age between them. 13 7 Liso is 13 years old. Her sister is 22 years old. Find the difference in age between them. 13 7 Liso is 13 years old. Her sister is 22 years old. Find the difference in age between them. 13 7 Liso is 13 years old. Her sister is 22 years old. Find the difference in age between them. 22	Hanna sandw

Morney Dham All Opualea Nov 2021

Abstract 18 - 3 = 15 8 - 2 = 6

3 in your head, count back 4. What ber are you at? Use your fingers to help.

ah has 23 sandwiches, Helen has 15 wiches. Find the difference between the number of sandwiches.

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part part whole model.	10 Move to using n
Make 10	14 - 9 =	13 - 7 = 6 3 4 - 4 - 3 - 4 - 12 - 5 - 4 - 6 - 9 - 11 - 12 - 03 - 14 - 16 - 17 - 18 - 19 - 20 Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	How many do w How many do w
Column method without regrouping	Image: Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	This will lead to a
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Calculations 234 - 88 Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can star number into clea

Morney Dhani-Ali Updated Nov 2021

This will lead to an understanding of subtracting any number

Missing digit calculations

Multiplication

Objective and Strategies	Concrete	Pictorial	
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	10
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multi
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 5+5+5=15	Write addition
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to addition.

ואטווופץ טוומווי-אוו טףעמנפע אטע בטבב

		Link arrays to area of rectangles.	
Grid Method	Show the link with arrays to first introduce the grid method. The tows of 10 4 rows of 3 Move on to using Base 10 to move towards a more compact method. The town of 13 The town of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. The town of 12 Catulations 4 x 126 Fill each row with 126. The town of the town of town of the town of town of the town of town of town of the town of town of town of town of town of the town of	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below. $\underbrace{\begin{array}{c} 24 \times 3 = 72 \\ \hline 1 & 20 & 4 \\ \hline 3 & 00 & 0000 \\ 0 & 0 & 0000 \\ 0 & 0 & 0000 \\ 12 \\ \hline 60 & 12 \\ \hline 72 \end{array}}_{20}$	Start with m

Page

1ai had to swim 23 lengths, 6 times week.	Find the product of 6 and 23	What is t What is t
low many lengths did she swim in ne week?	6 × 23 =	100
Vith the counters, prove that 6 x 23 138	6 23 × <u>23</u> × 6	

INIORNEY UNANI-AII Updated Nov 2021 Page

Division

Objective and Strate	gies	Concrete	Pictorial	
Sharing objects into gr	roups	$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Children use pictures or shapes to share quantities. 333 335	Share
Division as groupin	ηg	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 96 + 3 = 32 $96 + 3 = 32$ $0 = 0 = 0 = 0$ $0 = 0 = 0 = 0$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 5 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 9 10 11 12$ $4 4 6 7 8 10 10 10 10 10 10 10$	Divide 2
Division within array	iys	E.g. $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Image: Constraint of the strate of the st	Find the inve four linking n

worney Dhani-Ali Opdated Nov 2021

e 9 buns between three people.

$9 \div 3 = 3$

28 ÷ 7 = 4

28 into 7 groups. How many are in each group?

erse of multiplication and division sentences by creating number sentences.

			C()
Division with a remainder	14 ÷ 3 = Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete wri 29 - 1 dividend
Short division	615 ÷ 5 100s 10s 1s 000 00000 1 2 3 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.	1 7 8 1

can you divide 615 by 5 without using short division?

between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615 615 ÷ 5 = = 615 ÷ 5

2	
212	
2544 24	
14 12	
24 24	
0	E

21	
544	
4	
14	
12	
2	

Overview for year groups

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method – no regrouping.	Column method- regrouping. (up to 3 digits)	Column method- regrouping. (up to 4 digits)	Column method- regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method- regrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method- no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)

Mathematical Language

High expectations of the mathematical language used are essential, with staff only accepting what is correct. Consistency across the school is key:

Correct Terminology	Incorrect Terminology
ones	units
is equal to (is the same as)	equals
exchange	stealing
exchanging	borrowing
regrouping	
	generic term of 'sum' or 'number
calculation	sentence'
equation	
bar model	
known	
unknown	
part whole	